Articles | Volume 5, issue 2
https://doi.org/10.5194/gi-5-561-2016
https://doi.org/10.5194/gi-5-561-2016
Research article
 | 
09 Dec 2016
Research article |  | 09 Dec 2016

Electromagnetic system for detection and localization of miners caught in mine accidents

Vira Pronenko and Fedir Dudkin

Abstract. The profession of a miner is one of the most dangerous in the world. Among the main causes of fatalities in underground coal mines are the delayed alert of the accident and the lack of information regarding the actual location of the miners after the accident. In an emergency situation (failure or destruction of underground infrastructure), personnel search behind and beneath blockage needs to be performed urgently. However, none of the standard technologies – radio-frequency identification (RFID), Digital Enhanced Cordless Telecommunications (DECT), Wi-Fi, emitting cables, which use the stationary technical devices in mines – provide information about the miners location with the necessary precision. The only technology that is able to provide guaranteed delivery of messages to mine personnel, regardless of their location and under any destruction in the mine, is low-frequency radio technology, which is able to operate through the thickness of rocks even if they are wet. The proposed new system for miner localization is based on solving the inverse problem of determining the magnetic field source coordinates using the data of magnetic field measurements. This approach is based on the measurement of the magnetic field radiated by the miner's responder beacon using two fixed and spaced three-component magnetic field receivers and the inverse problem solution. As a result, a working model of the system for miner's beacon search and localization (MILES – MIner's Location Emergency System) was developed and successfully tested. This paper presents the most important aspects of this development and the results of experimental tests.

Download
Short summary
A new approach, based on the MRB magnetic field measurements radiated by two fixed and spaced RTI three-component magnetic field receivers and the solution of the inverse problem using these measurement results, was proposed and the concept of the MILES equipment for MRB search and localization was developed and successfully tested.