Journal metrics

Journal metrics

  • IF value: 1.319 IF 1.319
  • IF 5-year value: 1.299 IF 5-year 1.299
  • CiteScore value: 1.27 CiteScore 1.27
  • SNIP value: 0.740 SNIP 0.740
  • SJR value: 0.598 SJR 0.598
  • IPP value: 1.21 IPP 1.21
  • h5-index value: 12 h5-index 12
  • Scimago H index value: 6 Scimago H index 6
Volume 4, issue 1 | Copyright
Geosci. Instrum. Method. Data Syst., 4, 121-137, 2015
https://doi.org/10.5194/gi-4-121-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 16 Jun 2015

Research article | 16 Jun 2015

Designing optimal greenhouse gas observing networks that consider performance and cost

D. D. Lucas et al.
Related authors
Bayesian inverse modeling of the atmospheric transport and emissions of a controlled tracer release from a nuclear power plant
Donald D. Lucas, Matthew Simpson, Philip Cameron-Smith, and Ronald L. Baskett
Atmos. Chem. Phys., 17, 13521-13543, https://doi.org/10.5194/acp-17-13521-2017,https://doi.org/10.5194/acp-17-13521-2017, 2017
Failure analysis of parameter-induced simulation crashes in climate models
D. D. Lucas, R. Klein, J. Tannahill, D. Ivanova, S. Brandon, D. Domyancic, and Y. Zhang
Geosci. Model Dev., 6, 1157-1171, https://doi.org/10.5194/gmd-6-1157-2013,https://doi.org/10.5194/gmd-6-1157-2013, 2013
Related subject area
Network
Re-establishing glacier monitoring in Kyrgyzstan and Uzbekistan, Central Asia
Martin Hoelzle, Erlan Azisov, Martina Barandun, Matthias Huss, Daniel Farinotti, Abror Gafurov, Wilfried Hagg, Ruslan Kenzhebaev, Marlene Kronenberg, Horst Machguth, Alexandr Merkushkin, Bolot Moldobekov, Maxim Petrov, Tomas Saks, Nadine Salzmann, Tilo Schöne, Yuri Tarasov, Ryskul Usubaliev, Sergiy Vorogushyn, Andrey Yakovlev, and Michael Zemp
Geosci. Instrum. Method. Data Syst., 6, 397-418, https://doi.org/10.5194/gi-6-397-2017,https://doi.org/10.5194/gi-6-397-2017, 2017
A new permanent multi-parameter monitoring network in Central Asian high mountains – from measurements to data bases
T. Schöne, C. Zech, K. Unger-Shayesteh, V. Rudenko, H. Thoss, H.-U. Wetzel, A. Gafurov, J. Illigner, and A. Zubovich
Geosci. Instrum. Method. Data Syst., 2, 97-111, https://doi.org/10.5194/gi-2-97-2013,https://doi.org/10.5194/gi-2-97-2013, 2013
Cited articles
Adams, B. M., Bohnhoff, W. J., Dalbey, K. R., Eddy, J. P., Eldred, M. S., Gay, D. M., Haskell, K., Hough, P. D., and Swiler, L. P.: DAKOTA: a Multilevel Parallel Object-Oriented Framework for Design Optimization, Parameter Estimation, Uncertainty Quantification, and Sensitivity Analysis. Version 5.0 Users Manual, Tech. Rep. SAND2010-2183, Sandia National Laboratory, Albuquerque, New Mexico, USA, 2010.
Bache, K. and Lichman, M.: UCI Machine Learning Repository, available at: http://archive.ics.uci.edu/ml (last access: 12 May 2015), archived on 12 May 2015: http://www.webcitation.org/6YTndGkbi, 2015.
Baker, D. F., Law, R. M., Gurney, K. R., Rayner, P., Peylin, P., Denning, A. S., Bousquet, P., Bruhwiler, L., Chen, Y.-H., Ciais, P., Fung, I. Y., Heimann, M., John, J., Maki, T., Maksyutov, S., Masarie, K., Prather, M., Pak, B., Taguchi, S., and Zhu, Z.: TransCom 3 inversion intercomparison: impact of transport model errors on the interannual variability of regional CO2 fluxes, 1988–2003, Global Biogeochem. Cy., 20, GB1002, https://doi.org/10.1029/2004GB002439, 2006.
Barth, N. and Wunsch, C.: Oceanographic experiment design by simulated annealing, J. Phys. Oceanogr., 20, 1249–1263, 1990.
Bishop, C. M.: Pattern Recognition and Machine Learning (Information Science and Statistics), 1st Edn. 2006, corr. 2nd printing Edn., Springer-Verlag, New York, Secaucus, NJ, USA, 2007.
Publications Copernicus
Download
Short summary
Multiobjective optimization is used to design Pareto optimal greenhouse gas (GHG) observing networks. A prototype GHG network is designed to optimize scientific performance and measurement costs. The Pareto frontier is convex, showing the trade-offs between performance and cost and the diminishing returns in trading one for the other. Other objectives and constraints that are important in the design of practical GHG monitoring networks can be incorporated into our method.
Multiobjective optimization is used to design Pareto optimal greenhouse gas (GHG) observing...
Citation
Share