Journal cover Journal topic
Geoscientific Instrumentation, Methods and Data Systems An interactive open-access journal of the European Geosciences Union

Journal metrics

  • IF value: 1.023 IF 1.023
  • IF 5-year<br/> value: 1.557 IF 5-year
    1.557
  • CiteScore<br/> value: 0.86 CiteScore
    0.86
  • SNIP value: indexed SNIP
    indexed
  • SJR value: indexed SJR
    indexed
  • IPP value: indexed IPP
    indexed
  • h5-index value: 10 h5-index 10
Geosci. Instrum. Method. Data Syst., 4, 203-213, 2015
https://doi.org/10.5194/gi-4-203-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
Research article
09 Nov 2015
A comprehensive data acquisition and management system for an ecosystem-scale peatland warming and elevated CO2 experiment
M. B. Krassovski1, J. S. Riggs3, L. A. Hook1, W. R. Nettles2, P. J. Hanson2, and T. A. Boden1 1Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6290, USA
2Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6290, USA
3Integrated Operations Support Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6290, USA
Abstract. Ecosystem-scale manipulation experiments represent large science investments that require well-designed data acquisition and management systems to provide reliable, accurate information to project participants and third party users. The SPRUCE project (Spruce and Peatland Responses Under Climatic and Environmental Change, http://mnspruce.ornl.gov) is such an experiment funded by the Department of Energy's (DOE), Office of Science, Terrestrial Ecosystem Science (TES) Program. The SPRUCE experimental mission is to assess ecosystem-level biological responses of vulnerable, high carbon terrestrial ecosystems to a range of climate warming manipulations and an elevated CO2 atmosphere. SPRUCE provides a platform for testing mechanisms controlling the vulnerability of organisms, biogeochemical processes, and ecosystems to climatic change (e.g., thresholds for organism decline or mortality, limitations to regeneration, biogeochemical limitations to productivity, and the cycling and release of CO2 and CH4 to the atmosphere). The SPRUCE experiment will generate a wide range of continuous and discrete measurements.

To successfully manage SPRUCE data collection, achieve SPRUCE science objectives, and support broader climate change research, the research staff has designed a flexible data system using proven network technologies and software components. The primary SPRUCE data system components are the following:
1. data acquisition and control system – set of hardware and software to retrieve biological and engineering data from sensors, collect sensor status information, and distribute feedback to control components;
2. data collection system – set of hardware and software to deliver data to a central depository for storage and further processing;
3. data management plan – set of plans, policies, and practices to control consistency, protect data integrity, and deliver data.
This publication presents our approach to meeting the challenges of designing and constructing an efficient data system for managing high volume sources of in situ observations in a remote, harsh environmental location. The approach covers data flow starting from the sensors and ending at the archival/distribution points, discusses types of hardware and software used, examines design considerations that were used to choose them, and describes the data management practices chosen to control and enhance the value of the data.


Citation: Krassovski, M. B., Riggs, J. S., Hook, L. A., Nettles, W. R., Hanson, P. J., and Boden, T. A.: A comprehensive data acquisition and management system for an ecosystem-scale peatland warming and elevated CO2 experiment, Geosci. Instrum. Method. Data Syst., 4, 203-213, https://doi.org/10.5194/gi-4-203-2015, 2015.
Publications Copernicus
Download
Short summary
Ecosystem-scale manipulation experiments are getting more complicated and require innovative approaches that help manage high volumes of in situ observations. New large-scale, well-designed, and reliable data acquisition and management systems will become common it the future. The presented approach shows an example of such a system that was built in a remote and harsh environmental location. The provided details can be used for the design of similar systems for other experiments in future.
Ecosystem-scale manipulation experiments are getting more complicated and require innovative...
Share