Journal metrics

Journal metrics

  • IF value: 1.319 IF 1.319
  • IF 5-year value: 1.299 IF 5-year 1.299
  • CiteScore value: 1.27 CiteScore 1.27
  • SNIP value: 0.740 SNIP 0.740
  • SJR value: 0.598 SJR 0.598
  • IPP value: 1.21 IPP 1.21
  • h5-index value: 12 h5-index 12
  • Scimago H index value: 6 Scimago H index 6
Geosci. Instrum. Method. Data Syst., 5, 151-162, 2016
https://doi.org/10.5194/gi-5-151-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
Research article
20 May 2016
Practical considerations for enhanced-resolution coil-wrapped distributed temperature sensing
Koen Hilgersom1, Tim van Emmerik1, Anna Solcerova1, Wouter Berghuijs2, John Selker3, and Nick van de Giesen1 1Water Resources Section, Faculty of Civil Engineering and Geosciences, Delft University of Technology, Delft, P.O. Box 5048, 2600 GA, the Netherlands
2Department of Civil Engineering, University of Bristol, Bristol, University Walk, BS8 1TR, UK
3Department of Biological and Ecological Engineering, Oregon State University, Corvallis, 116 Gilmore Hall, OR 97331, USA
Abstract. Fibre optic distributed temperature sensing (DTS) is widely applied in Earth sciences. Many applications require a spatial resolution higher than that provided by the DTS instrument. Measurements at these higher resolutions can be achieved with a fibre optic cable helically wrapped on a cylinder. The effect of the probe construction, such as its material, shape, and diameter, on the performance has been poorly understood. In this article, we study data sets obtained from a laboratory experiment using different cable and construction diameters, and three field experiments using different construction characteristics. This study shows that the construction material, shape, diameter, and cable attachment method can have a significant influence on DTS temperature measurements. We present a qualitative and quantitative approximation of errors introduced through the choice of auxiliary construction, influence of solar radiation, coil diameter, and cable attachment method. Our results provide insight into factors that influence DTS measurements, and we present a number of solutions to minimize these errors. These practical considerations allow designers of future DTS measurement set-ups to improve their environmental temperature measurements.

Citation: Hilgersom, K., van Emmerik, T., Solcerova, A., Berghuijs, W., Selker, J., and van de Giesen, N.: Practical considerations for enhanced-resolution coil-wrapped distributed temperature sensing, Geosci. Instrum. Method. Data Syst., 5, 151-162, https://doi.org/10.5194/gi-5-151-2016, 2016.
Publications Copernicus
Download
Short summary
Fibre optic distributed temperature sensing allows one to measure temperature patterns along a fibre optic cable with resolutions down to 25 cm. In geosciences, we sometimes wrap the cable to a coil to measure temperature at even smaller scales. We show that coils with narrow bends affect the measured temperatures. This also holds for the object to which the coil is attached, when heated by solar radiation. We therefore recommend the necessity to carefully design such distributed temperature probes.
Fibre optic distributed temperature sensing allows one to measure temperature patterns along a...
Share