Journal cover Journal topic
Geoscientific Instrumentation, Methods and Data Systems An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 1.302 IF 1.302
  • IF 5-year value: 1.356 IF 5-year
    1.356
  • CiteScore value: 1.47 CiteScore
    1.47
  • SNIP value: 0.810 SNIP 0.810
  • IPP value: 1.37 IPP 1.37
  • SJR value: 0.598 SJR 0.598
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 8 Scimago H
    index 8
  • h5-index value: 14 h5-index 14
Volume 6, issue 1
Geosci. Instrum. Method. Data Syst., 6, 199–207, 2017
https://doi.org/10.5194/gi-6-199-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
Geosci. Instrum. Method. Data Syst., 6, 199–207, 2017
https://doi.org/10.5194/gi-6-199-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 19 Apr 2017

Research article | 19 Apr 2017

A low-cost acoustic permeameter

Stephen A. Drake et al.
Related authors  
Wind enhances differential air advection in surface snow at sub-meter scales
Stephen A. Drake, John S. Selker, and Chad W. Higgins
The Cryosphere, 11, 2075–2087, https://doi.org/10.5194/tc-11-2075-2017,https://doi.org/10.5194/tc-11-2075-2017, 2017
Short summary
Related subject area  
Acoustic sensor
Automated field detection of rock fracturing, microclimate, and diurnal rock temperature and strain fields
K. Warren, M.-C. Eppes, S. Swami, J. Garbini, and J. Putkonen
Geosci. Instrum. Method. Data Syst., 2, 275–288, https://doi.org/10.5194/gi-2-275-2013,https://doi.org/10.5194/gi-2-275-2013, 2013
A custom acoustic emission monitoring system for harsh environments: application to freezing-induced damage in alpine rock walls
L. Girard, J. Beutel, S. Gruber, J. Hunziker, R. Lim, and S. Weber
Geosci. Instrum. Method. Data Syst., 1, 155–167, https://doi.org/10.5194/gi-1-155-2012,https://doi.org/10.5194/gi-1-155-2012, 2012
Cited articles  
Albert, D. G.: Acoustic waveform inversion with application to seasonal snow covers, J. Acoust. Soc. Am., 109, 91–101, https://doi.org/10.1121/1.1328793, 2001.
Albert, D. G., Decato, S. N., and Carbee, D. L.: Snow cover effects on acoustic sensors, Cold Reg. Sci. Technol., 52, 132–145, https://doi.org/10.1016/j.coldregions.2007.05.009, 2007.
Albert, M. R., Shultz, E. F., and Perron Jr., F. E.: Snow and firn permeability at Siple Dome, Antarctica, Ann. Glaciol., 31, 353–356, https://doi.org/10.3189/172756400781820273, 2000.
Álvarez-Arenas, T. E. G., de la Fuente, S., and Gómez, I. G.: Simultaneous determination of apparent tortuosity and microstructure length scale and shape: Application to rigid open cell foams, Appl. Phys. Lett., 88, 221910, https://doi.org/10.1063/1.2208921, 2006.
Arakawa, H., Izumi, K., Kawashima, K., and Kawamura, T.: Study on quantitative classification of seasonal snow using specific surface area and intrinsic permeability, Cold Reg. Sci. Technol., 59, 163–168, https://doi.org/10.1016/j.coldregions.2009.07.004, 2009.
Publications Copernicus
Download
Short summary
Intrinsic permeability of snow is an important parameter that regulates snow–atmosphere exchange. Current permeability measurements require specialized equipment for acquisition in the field and have increased variability with increasing snow heterogeneity. To facilitate a field-based, volume-averaged measure of permeability, we designed and assembled an acoustic permeameter. When using reticulated foam samples of known permeability, the mean relative error from known values was less than 20 %.
Intrinsic permeability of snow is an important parameter that regulates snow–atmosphere...
Citation