Articles | Volume 6, issue 2
https://doi.org/10.5194/gi-6-231-2017
https://doi.org/10.5194/gi-6-231-2017
Research article
 | 
07 Jul 2017
Research article |  | 07 Jul 2017

Stability analysis of geomagnetic baseline data obtained at Cheongyang observatory in Korea

Shakirah M. Amran, Wan-Seop Kim, Heh Ree Cho, and Po Gyu Park

Related subject area

Data quality
Upgrade of LSA-SAF Meteosat Second Generation daily surface albedo (MDAL) retrieval algorithm incorporating aerosol correction and other improvements
Daniel Juncu, Xavier Ceamanos, Isabel F. Trigo, Sandra Gomes, and Sandra C. Freitas
Geosci. Instrum. Method. Data Syst., 11, 389–412, https://doi.org/10.5194/gi-11-389-2022,https://doi.org/10.5194/gi-11-389-2022, 2022
Short summary
Swarm Langmuir probes' data quality validation and future improvements
Filomena Catapano, Stephan Buchert, Enkelejda Qamili, Thomas Nilsson, Jerome Bouffard, Christian Siemes, Igino Coco, Raffaella D'Amicis, Lars Tøffner-Clausen, Lorenzo Trenchi, Poul Erik Holmdahl Olsen, and Anja Stromme
Geosci. Instrum. Method. Data Syst., 11, 149–162, https://doi.org/10.5194/gi-11-149-2022,https://doi.org/10.5194/gi-11-149-2022, 2022
Short summary
Evaluating methods for reconstructing large gaps in historic snow depth time series
Johannes Aschauer and Christoph Marty
Geosci. Instrum. Method. Data Syst., 10, 297–312, https://doi.org/10.5194/gi-10-297-2021,https://doi.org/10.5194/gi-10-297-2021, 2021
Short summary
Production of definitive data from Indonesian geomagnetic observatories
Relly Margiono, Christopher W. Turbitt, Ciarán D. Beggan, and Kathryn A. Whaler
Geosci. Instrum. Method. Data Syst., 10, 169–182, https://doi.org/10.5194/gi-10-169-2021,https://doi.org/10.5194/gi-10-169-2021, 2021
Short summary
Auroral classification ergonomics and the implications for machine learning
Derek McKay and Andreas Kvammen
Geosci. Instrum. Method. Data Syst., 9, 267–273, https://doi.org/10.5194/gi-9-267-2020,https://doi.org/10.5194/gi-9-267-2020, 2020
Short summary

Cited articles

Clarke, E., Baillie, O., Reay, S. J., and Turbitt, C. W.: A method for the near real-time production of quasi-definitive magnetic observatory data, Earth Planets Space, 65, 1363–1374, 2013.
Csontos, A., Hegymegi, L., and Heilig, B.: Temperature Tests on Modern Magnetometers', Publs. Inst. Geophys. Pol. Acad. Sc. C, 99, 171–177, 2007.
Jankowski, J. and Sucksdorff, C.: Guide for Magnetic Measurements and Observatory Practice, International Association of Geomagnetism and Aeronomy, Warsaw, 1996,
McLean, S., Macmillan, S., Maus, S., Lesur, V., Thomson, A., and Dater, D.: The US/UK World Magnetic Model for 2005–2010, NOAA Technical Report NESDIS/NGDC-1, USA, 2004.
Park, P. G., Kim, W. S., Kim, M. S., and Shifrin, V. Ya.: Measurement and Analysis of Earth's Magnetic Field based on Low-Magnetic Field Standards, CPEM Conference Digest, 29th Conference on Precision Electromagnetic Measurements (CPEM), IEEE, 358–359, 2014.
Download
Short summary
In this work, we analysed the Cheongyang geomagnetic baseline data from 2014 to 2016. We observed a step of more than 5 nT in the H and Z baseline in 2014 and 2015 due to artificial magnetic noise in the absolute hut. The baseline also shows a periodic modulation due to temperature variations in the fluxgate magnetometer hut. The quality of the baselines was improved by correcting the discontinuity in the H and Z baselines.