Journal cover Journal topic
Geoscientific Instrumentation, Methods and Data Systems An interactive open-access journal of the European Geosciences Union

Journal metrics

  • IF value: 1.023 IF 1.023
  • IF 5-year<br/> value: 1.557 IF 5-year
    1.557
  • CiteScore<br/> value: 0.86 CiteScore
    0.86
  • SNIP value: indexed SNIP
    indexed
  • SJR value: indexed SJR
    indexed
  • IPP value: indexed IPP
    indexed
  • h5-index value: 10 h5-index 10
Geosci. Instrum. Method. Data Syst., 6, 361-366, 2017
https://doi.org/10.5194/gi-6-361-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
Research article
25 Sep 2017
In situ vector calibration of magnetic observatories
Alexandre Gonsette, Jean Rasson, and François Humbled Centre de Physique du Globe, Royal Meteorological Institute, 5670 Dourbes, Belgium
Abstract. The goal of magnetic observatories is to measure and provide a vector magnetic field in a geodetic coordinate system. For that purpose, instrument set-up and calibration are crucial. In particular, the scale factor and orientation of a vector magnetometer may affect the magnetic field measurement. Here, we highlight the baseline concept and demonstrate that it is essential for data quality control. We show how the baselines can highlight a possible calibration error. We also provide a calibration method based on high-frequency absolute measurements. This method determines a transformation matrix for correcting variometer data suffering from scale factor and orientation errors. We finally present a practical case where recovered data have been successfully compared to those coming from a reference magnetometer.

Citation: Gonsette, A., Rasson, J., and Humbled, F.: In situ vector calibration of magnetic observatories, Geosci. Instrum. Method. Data Syst., 6, 361-366, https://doi.org/10.5194/gi-6-361-2017, 2017.
Publications Copernicus
Download
Short summary
We present a novel method for calibrating magnetic observatories. We show how magnetometer baselines can highlight a possible calibration error. We also provide a method based on high-frequency automatic absolute measurements. This method determines a transformation matrix for correcting raw data suffering from scale factor and orientation errors. We finally present a practical case where covered data have been successfully compared to those coming from a reference magnetometer.
We present a novel method for calibrating magnetic observatories. We show how magnetometer...
Share