Journal cover Journal topic
Geoscientific Instrumentation, Methods and Data Systems An interactive open-access journal of the European Geosciences Union

Journal metrics

  • IF value: 1.023 IF 1.023
  • IF 5-year<br/> value: 1.557 IF 5-year
    1.557
  • CiteScore<br/> value: 0.86 CiteScore
    0.86
  • SNIP value: indexed SNIP
    indexed
  • SJR value: indexed SJR
    indexed
  • IPP value: indexed IPP
    indexed
  • h5-index value: 10 h5-index 10
Geosci. Instrum. Method. Data Syst., 6, 397-418, 2017
https://doi.org/10.5194/gi-6-397-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
Research article
12 Oct 2017
Re-establishing glacier monitoring in Kyrgyzstan and Uzbekistan, Central Asia
Martin Hoelzle1, Erlan Azisov2, Martina Barandun1, Matthias Huss1,3, Daniel Farinotti3,4, Abror Gafurov5, Wilfried Hagg6, Ruslan Kenzhebaev2, Marlene Kronenberg1,7, Horst Machguth1,8, Alexandr Merkushkin10, Bolot Moldobekov2, Maxim Petrov9, Tomas Saks1, Nadine Salzmann1, Tilo Schöne5, Yuri Tarasov10, Ryskul Usubaliev2, Sergiy Vorogushyn5, Andrey Yakovlev11, and Michael Zemp8 1Department of Geosciences, University of Fribourg, Fribourg, Switzerland
2Central Asian Institute for Applied Geosciences, CAIAG, Bishkek, Kyrgyzstan
3Laboratory of Hydraulics, Hydrology and Glaciology (VAW), ETH Zurich, Zurich, Switzerland
4Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
5GFZ German Research Center for Geosciences, Potsdam, Germany
6Department of Geography, University of Munich, Munich, Germany
7Meteodat GmbH, Zurich, Switzerland
8Department of Geography, University of Zurich, Zurich, Switzerland
9Glacial Geology Laboratory, Tashkent, Uzbekistan
10NIGMI of UzHydromet, Tashkent, Uzbekistan
11Uzbek scientific investigation and design survey institute, UzGIP, Tashkent, Uzbekistan
Abstract. Glacier mass loss is among the clearest indicators of atmospheric warming. The observation of these changes is one of the major objectives of the international climate monitoring strategy developed by the Global Climate Observing System (GCOS). Long-term glacier mass balance measurements are furthermore the basis for calibrating and validating models simulating future runoff of glacierised catchments. This is essential for Central Asia, which is one of the driest continental regions of the Northern Hemisphere. In the highly populated regions, water shortage due to decreased glacierisation potentially leads to pronounced political instability, drastic ecological changes and endangered food security. As a consequence of the collapse of the former Soviet Union, however, many valuable glacier monitoring sites in the Tien Shan and Pamir Mountains were abandoned. In recent years, multinational actors have re-established a set of important in situ measuring sites to continue the invaluable long-term data series. This paper introduces the applied monitoring strategy for selected glaciers in the Kyrgyz and Uzbek Tien Shan and Pamir, highlights the existing and the new measurements on these glaciers, and presents an example for how the old and new data can be combined to establish multi-decadal mass balance time series. This is crucial for understanding the impact of climate change on glaciers in this region.

Citation: Hoelzle, M., Azisov, E., Barandun, M., Huss, M., Farinotti, D., Gafurov, A., Hagg, W., Kenzhebaev, R., Kronenberg, M., Machguth, H., Merkushkin, A., Moldobekov, B., Petrov, M., Saks, T., Salzmann, N., Schöne, T., Tarasov, Y., Usubaliev, R., Vorogushyn, S., Yakovlev, A., and Zemp, M.: Re-establishing glacier monitoring in Kyrgyzstan and Uzbekistan, Central Asia, Geosci. Instrum. Method. Data Syst., 6, 397-418, https://doi.org/10.5194/gi-6-397-2017, 2017.
Publications Copernicus
Download
Share