Journal cover Journal topic
Geoscientific Instrumentation, Methods and Data Systems An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 1.319 IF 1.319
  • IF 5-year value: 1.299 IF 5-year 1.299
  • CiteScore value: 1.27 CiteScore 1.27
  • SNIP value: 0.740 SNIP 0.740
  • SJR value: 0.598 SJR 0.598
  • IPP value: 1.21 IPP 1.21
  • h5-index value: 12 h5-index 12
  • Scimago H index value: 6 Scimago H index 6
Volume 7, issue 2 | Copyright
Geosci. Instrum. Method. Data Syst., 7, 169-178, 2018
https://doi.org/10.5194/gi-7-169-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 18 Jun 2018

Research article | 18 Jun 2018

Technical note: A low-cost albedometer for snow and ice measurements – theoretical results and application on a tropical mountain in Bolivia

Thomas Condom1, Marie Dumont2, Lise Mourre1, Jean Emmanuel Sicart1, Antoine Rabatel1, Alessandra Viani1, and Alvaro Soruco3 Thomas Condom et al.
  • 1Université de Grenoble Alpes, IRD, CNRS, Grenoble-INP, IGE (UMR5001), 38000 Grenoble, France
  • 2Météo-France, CNRS, CNRM-GAME/CEN (UMR3589), Grenoble, France
  • 3UMSA, Instituto de Geológicas y del Medio Ambiente, La Paz, Bolivia

Abstract. This study presents a new instrument called a low-cost albedometer (LCA) composed of two illuminance sensors that are used to measure in situ incident and reflected illuminance values on a daily timescale. The ratio between reflected vs. incident illuminances is called the albedo index and can be compared with actual albedo values. Due to the shape of the sensor, the direct radiation for zenith angles ranging from 55 to 90° is not measured. The spectral response of the LCA varies with the solar irradiance wavelengths within the range 0.26 to 1.195µm, and the LCA detects 85% of the total spectral solar irradiance for clear sky conditions. We first consider the theoretical results obtained for 10 different ice and snow surfaces with clear sky and cloudy sky incident solar irradiance that show that the LCA spectral response may be responsible for an overestimation of the theoretical albedo values by roughly 9% at most. Then, the LCA values are compared with two traditional albedometers, which are CM3 pyranometers (Kipp & Zonen), in the shortwave domain from 0.305 to 2.800µm over a 1-year measurement period (2013) for two sites in a tropical mountainous catchment in Bolivia. One site is located on the Zongo Glacier (i.e., snow and ice surfaces) and the second one is found on the crest of the lateral moraine (bare soil and snow surfaces), which present a horizontal surface and a sky view factor of 0.98. The results, at daily time steps (256 days), given by the LCA are in good agreement with the classic albedo measurements taken with pyranometers with R2 = 0.83 (RMSD = 0.10) and R2 = 0.92 (RMSD = 0.08) for the Zongo Glacier and the right-hand side lateral moraine, respectively. This demonstrates that our system performs well and thus provides relevant opportunities to document spatiotemporal changes in the surface albedo from direct observations at the scale of an entire catchment at a low cost. Finally, during the period from September 2015 to June 2016, direct observations were collected with 15 LCAs on the Zongo Glacier and successfully compared with LANDSAT images showing the surface conditions of the glacier (i.e., snow or ice). This comparison illustrates the efficiency of this system to monitor the daily time step changes in the snow and ice coverage distributed on the glacier. Despite the limits imposed by the angle view restrictions, the LCA can be used between 45°N and 45°S during the ablation season (spring and summer) when the melt rate related to the albedo is the most important.

Publications Copernicus
Download
Short summary
This study presents a new instrument called a low-cost albedometer (LCA) composed of two illuminance sensors. The ratio between reflected vs. incident illuminances is called the albedo index and can be compared with actual albedo values. We demonstrate that our system performs well and thus provides relevant opportunities to document spatiotemporal changes in the surface albedo from direct observations at the scale of an entire catchment at a low cost.
This study presents a new instrument called a low-cost albedometer (LCA) composed of two...
Citation
Share