Journal cover Journal topic
Geoscientific Instrumentation, Methods and Data Systems An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 1.319 IF 1.319
  • IF 5-year value: 1.299 IF 5-year 1.299
  • CiteScore value: 1.27 CiteScore 1.27
  • SNIP value: 0.740 SNIP 0.740
  • SJR value: 0.598 SJR 0.598
  • IPP value: 1.21 IPP 1.21
  • h5-index value: 12 h5-index 12
  • Scimago H index value: 6 Scimago H index 6
Volume 7, issue 1 | Copyright
Geosci. Instrum. Method. Data Syst., 7, 21-37, 2018
https://doi.org/10.5194/gi-7-21-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 30 Jan 2018

Research article | 30 Jan 2018

Airborne polarimetric Doppler weather radar: trade-offs between various engineering specifications

Jothiram Vivekanandan and Eric Loew Jothiram Vivekanandan and Eric Loew
  • National Center for Atmospheric Research (NCAR), Boulder, CO, USA

Abstract. NCAR EOL is investigating potential configurations for the next-generation airborne phased array radar (APAR) that is capable of retrieving dynamic and microphysical characteristics of clouds and precipitation. The APAR will operate at C band. The APAR will use the electronic scanning (e-scan) feature to acquire the optimal number of independent samples for recording research-quality measurements. Since the airborne radar has only a limited time for collecting measurements over a specified region (moving aircraft platform ∼ 100ms−1), beam multiplexing will significantly enhance its ability to collect high-resolution, research-quality measurements. Beam multiplexing reduces errors in radar measurements while providing rapid updates of scan volumes. Beamwidth depends on the size of the antenna aperture. Beamwidth and directivity of elliptical, circular, and rectangular antenna apertures are compared and radar sensitivity is evaluated for various polarimetric configurations and transmit–receive (T/R) elements. In the case of polarimetric measurements, alternate transmit with alternate receive (single-channel receiver) and simultaneous reception (dual-channel receiver) is compared. From an overall architecture perspective, element-level digitization of T/R module versus digital sub-array is considered with regard to flexibility in adaptive beamforming, polarimetric performance, calibration, and data quality. Methodologies for calibration of the radar and removing bias in polarimetric measurements are outlined. The above-mentioned engineering options are evaluated for realizing an optimal APAR system suitable for measuring the high temporal and spatial resolutions of Doppler and polarimetric measurements of precipitation and clouds.

Publications Copernicus
Download
Short summary
This manuscript describes a next generation airborne radar that has the potential for estimating 3-D winds and also delineating regions of ice and liquid in clouds. It takes advantage of phased array and dual-polarimetric radar technologies for retrieving winds and detecting ice and liquid regions respectively. Engineering discussion in this manuscript forms the basis for designing an optimal phased array radar system. Rapid scanning using a phased array is a critical design requirement.
This manuscript describes a next generation airborne radar that has the potential for estimating...
Citation
Share