Journal cover Journal topic
Geoscientific Instrumentation, Methods and Data Systems An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 1.319 IF 1.319
  • IF 5-year value: 1.299 IF 5-year 1.299
  • CiteScore value: 1.27 CiteScore 1.27
  • SNIP value: 0.740 SNIP 0.740
  • SJR value: 0.598 SJR 0.598
  • IPP value: 1.21 IPP 1.21
  • h5-index value: 12 h5-index 12
  • Scimago H index value: 6 Scimago H index 6
Volume 7, issue 3 | Copyright
Geosci. Instrum. Method. Data Syst., 7, 245-252, 2018
https://doi.org/10.5194/gi-7-245-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 21 Aug 2018

Research article | 21 Aug 2018

Laboratory spectral calibration of the TanSat atmospheric carbon dioxide grating spectrometer

Zhongdong Yang1, Yuquan Zhen2, Zenshan Yin3, Chao Lin2, Yanmeng Bi1, Wu Liu3, Qian Wang1, Long Wang2, Songyan Gu1, and Longfei Tian3 Zhongdong Yang et al.
  • 1National Satellite Meteorological Center (NSMC), CMA, Beijing, China
  • 2Changchun Institute of Optics, Fine Mechanics and Physics (CIOFMP), CAS, Changchun, China
  • 3Shanghai Engineering Center for Microsatellites (SECM), CAS, Shanghai, China

Abstract. TanSat is a key satellite mission in the Chinese Earth Observation program and is designed to measure the global atmospheric column-averaged dry-air CO2 mole fraction by measuring the visible and near-infrared solar-reflected spectra. The first Chinese super-high-resolution grating spectrometer for measuring atmospheric CO2 is aboard TanSat. This spectrometer is a suite incorporating three grating spectrometers that make coincident measurements of reflected sunlight in the near-infrared CO2 band near 1.61 and 2.06µm and in the molecular oxygen (O2) A-band at 0.76µm. The spectral resolving power (λ∕Δλ) values are  ∼ 19000,  ∼ 12800, and  ∼ 12250 in the O2 A-band, and the weak and strong absorption bands of CO2, respectively. This paper describes the prelaunch spectral calibration of the atmospheric carbon dioxide grating spectrometer aboard TanSat. Several critical aspects of the spectrometer, including the spectral resolution, spectral dispersion, and the instrument line shape function of each channel, which are directly related to producing the Level 1 products are evaluated in this paper. The instrument line shape function of the spectrometer is notably symmetrical and perfectly consistent across all channels in the three bands. The symmetry is better then 99.99%, and the consistency in the worst case is better then 99.97%, 99.98%, and 99.98% in the O2 A, WCO2, and SCO2 bands, respectively. The resulting variations in the spectral calibrations and the radiometric response errors are negligible. The spectral resolution characterizations meet the mission requirements. The spectral dispersions have excellent consistency in the spatial dimension of each band, and there is good linearity in the spectral dimension of each band. The RMS errors of the fitting residuals are 0.9, 1, and 0.7pm in the O2 A-band, the WCO2 band, and the SCO2 band, respectively. Taken together, these results suggest that the spectral characterizations of the spectrometer aboard TanSat meet the mission requirements.

Publications Copernicus
Download
Short summary
TanSat is a key satellite mission in the Chinese Earth Observation program and is designed to measure the global atmospheric column-averaged dry-air CO2 mole fraction. Several critical aspects of the spectrometer, including the spectral resolution, spectral dispersion, and the instrument line shape function of each channel were evaluated. The instrument line shape function of the spectrometer is notably symmetrical and perfectly consistent across all channels in the three bands.
TanSat is a key satellite mission in the Chinese Earth Observation program and is designed to...
Citation
Share